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Prevalence of violations

• Prevalence of violations: the rate at which policy violations occur

Violation



Estimating the prevalence
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Two problems in practice

Low prevalence
• Uniform sampling will result in 

too few violating examples
• Solution: 
• Sampling non-uniformly based on 

item’s features (i.e., context) 
which correlate with the 
likelihood of being a violation
• In practice, there is a classifier 

which converts items’ features 
into a single score

Labeling mistakes
• Human labelers make mistakes
• Solution: 
• Send each item to multiple 

labelers and use statistical 
models to infer the true labels 
based on the observed labels



Modeling crowdsourced labels

• The “classic” Dawid-Skene (D&S) model
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Modeling crowdsourced labels

• The “classic” Dawid-Skene (D&S) model
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Theodon

Population Samples Human labels
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Sampling weights based 
on classifier scores

Collecting multiple 
labels per item



Generative process: D&S model
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Generative process: D&S model
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Generative process: Theodon
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Gaussian processes (GPs)

A GP is a stochastic process which defines a probability distribution 
over the function

• m(x): the mean function
• K(x, x’): the covariance function



Related models

Baseline Prevalence Sensitivity & Specificity References

FL-FL Flat Flat Dawid & Skene (D&S) (1979)

LR-FL Logistic Regression Flat Raykar et al. (ICML 2009, JMLR 2010)

GP-FL Gaussian Process Flat Rodrigues et al. (ICML 2014)

LR-LR Logistic Regression Logistic Regression Yan et al. (AISTATS 2010, MLJ 2014)

Theodon Gaussian Process Gaussian Process Our work



Deployment at Meta



Empirical results

Applications
• Prevalence measurement
• Labeler performance measurement
• Classifier calibration
• Per-item label aggregation

Datasets
• Data generated from crowdsourcing applications at Meta
• Public crowdsourcing datasets: Music and Sentiment



Crowdsourced data for prevalence 
measurement at Meta
• Simulate data based on crowdsourcing applications at Meta



Experimental setup

• Tasks
• Prevalence measurement: estimating 

the prevalence function
• Labeler performance measurement: 

estimating the sensitivity and 
specificity functions for each labeler

• Evaluation 
• Comparing the function estimate 

(mean !𝜃 with 95%-CI [ !𝜃(, !𝜃)]) with the 
true function 𝜃∗

!𝜃 

𝜃∗

[ !𝜃" , !𝜃#]



Results: prevalence & labeler performance 
measurement

Theodon consistently 
provides low Mean 
Absolute Error (MAE) 
while achieving high 
coverage rate compared 
to other baselines



Public crowdsourcing datasets

• Two public datasets by Rodrigues et al.: Music and Sentiment
• Each item has both crowdsourced labels and a ground truth label

• Label aggregation
• Goal: inferring the ground truth label from crowdsourced labels
• Metric: Area under the PR curve (AUC-PR)

• Classifier calibration
• Goal: transforming the raw classifier scores into the true correctness 

probabilities using crowdsourced labels
• Metric: Expected calibration error (ECE)



Results: label aggregation & classifier 
calibration



Conclusion

• Theodon: a system developed and deployed at Meta to model 
crowdsourced labels by capturing the dependencies of label’s 
prevalence and labelers’ performance on the input classifier score 
using Gaussian Processes 

• Extensive empirical results on Meta’s and public datasets



Thank you!


