Crowdsourcing with Contextual Uncertainty

Viet-An Nguyen, Peibei Shi, Jagdish Ramakrishnan, Narjes Torabi, Nimar S. Arora, Udi Weinsberg, Michael Tingley

Meta

KDD 2022

Prevalence of violations

• Prevalence of violations: the rate at which policy violations occur

Estimating the prevalence

Two problems in practice

Low prevalence

- Uniform sampling will result in too few violating examples
- Solution:
 - Sampling non-uniformly based on item's features (i.e., context) which correlate with the likelihood of being a violation
 - In practice, there is a classifier which converts items' features into a single score

Labeling mistakes

- Human labelers make mistakes
- Solution:
 - Send each item to multiple labelers and use statistical models to infer the true labels based on the observed labels

Modeling crowdsourced labels

• The "classic" Dawid-Skene (D&S) model

Crowdsourced data

Per-labeler Confusion Matrix

	0	•				
0	0.9	0.1				
	0.3	0.7				

Overall Prevalence

Modeling crowdsourced labels

• The "classic" Dawid-Skene (D&S) model

Crowdsourced data

Per-labeler
Sensitivity (TPR) and
Specificity (TNR)
for binary label

	0	•			0	•	
0	0.9	0.1		0	0.85	0.15	
•	0.3	0.7		•	0.1	0.9	

Overall Prevalence

Theodon

Generative process: D&S model

Generative process: D&S model

Generative process: Theodon

Gaussian processes (GPs)

A GP is a stochastic process which defines a probability distribution over the function

$$p(f \mid x) = \mathcal{GP}(m(x), K(x, x'))$$

- m(x): the mean function
- K(x, x'): the covariance function

$$K_{\alpha,\rho}(x,x') = \alpha^2 \exp\left(-(x-x')^2/2\rho^2\right)$$

Related models

Baseline	Prevalence	Sensitivity & Specificity	References		
FL-FL	Flat	Flat	Dawid & Skene (D&S) (1979)		
LR-FL	Logistic Regression	Flat	Raykar et al. (ICML 2009, JMLR 2010)		
GP-FL	Gaussian Process	Flat	Rodrigues et al. (ICML 2014)		
LR-LR	Logistic Regression	Logistic Regression	Yan et al. (AISTATS 2010, MLJ 2014)		
Theodon	Gaussian Process	Gaussian Process	Our work		

Deployment at Meta

Empirical results

Applications

- Prevalence measurement
- Labeler performance measurement
- Classifier calibration
- Per-item label aggregation

Datasets

- Data generated from crowdsourcing applications at Meta
- Public crowdsourcing datasets: Music and Sentiment

Crowdsourced data for prevalence measurement at Meta

Simulate data based on crowdsourcing applications at Meta

Experimental setup

Tasks

- Prevalence measurement: estimating the prevalence function
- Labeler performance measurement: estimating the sensitivity and specificity functions for each labeler

Evaluation

• Comparing the function estimate (mean $\hat{\theta}$ with 95%-CI $[\hat{\theta}_L, \hat{\theta}_U]$) with the true function θ^*

Mean absolute error (MAE) of the mean $\hat{\theta}$:

$$\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \left| \hat{\theta}(s) - \theta^*(s) \right|$$

Coverage rate of the confidence interval (CI):

$$\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \mathbf{1} \left\{ \theta^*(s) \in [\hat{\theta}_L(s), \hat{\theta}_U(s)] \right\}$$

Results: prevalence & labeler performance measurement

Theodon consistently provides low Mean Absolute Error (MAE) while achieving high coverage rate compared to other baselines

Public crowdsourcing datasets

- Two public datasets by Rodrigues et al.: *Music* and *Sentiment*
 - Each item has both crowdsourced labels and a ground truth label
- Label aggregation
 - Goal: inferring the ground truth label from crowdsourced labels
 - Metric: Area under the PR curve (AUC-PR)
- Classifier calibration
 - Goal: transforming the raw classifier scores into the true correctness probabilities using crowdsourced labels
 - Metric: Expected calibration error (ECE)

Results: label aggregation & classifier calibration

	Metric	l	Base	MV	FV	Snorkel	FL-FL	Lr-Fl	Gp-Fl	Lr-Lr	THEODON
Sentiment	ECE	3	0.2304	0.1360	0.0754	0.0989	0.0952	0.0855	0.0814	0.0729	0.0661
		9	0.2394	0.1116	0.0887	0.0765	0.0842	0.0725	0.0726	0.0704*	0.0656
	AUC-PR	3	0.9210	0.8931	0.9169	0.9440	0.9283	0.9578	0.9604*	0.9641*	0.9649
		9	0.9345	0.9151	0.9498	0.9694	0.9536	0.9701	0.9716	0.9718	0.9771
Music	ECE	3	0.1816	0.0580	0.0514	0.0649	0.0487	0.0424*	0.0403	0.0470	0.0413*
		7	0.1835	0.0570	0.0635	0.0582	0.0448	0.0420*	0.0413	0.0443	0.0423*
	AUC-PR	3	0.7245	0.7139	0.7094	0.7808	0.7719	0.8276	0.8513*	0.8276	0.8619
		7	0.7660	0.7261	0.7399	0.8132	0.7906	0.8378*	0.8474*	0.8329*	0.8515

Conclusion

 Theodon: a system developed and deployed at Meta to model crowdsourced labels by capturing the dependencies of label's prevalence and labelers' performance on the input classifier score using Gaussian Processes

• Extensive empirical results on Meta's and public datasets

Thank you!