Abstract—This paper analyzes the trustor and trustee factors that lead to inter-personal trust using a well studied Trust Antecedent framework in management science [10]. To apply these factors to trust ranking problem in online rating systems, we derive features that correspond to each factor and develop different trust ranking models. The advantage of this approach is that features relevant to trust can be systematically derived so as to achieve good prediction accuracy. Through a series of experiments on real data from Epinions, we show that even a simple model using the derived features yields good accuracy and outperforms MoleTrust, a trust propagation based model. SVM classifiers using these features also show improvements.

Keywords—Trust prediction, trust ranking, trust antecedent framework.

I. INTRODUCTION

A. Motivation

In this paper, we study how trusts can be directly inferred from rating data. Our research works on the premise that user rating behaviors reflect the trusts among users. For example, users are likely to give higher ratings to people they trust than others. Users are likely to be more interested consuming objects contributed by people they trust.

In organizational behavior research, there is a well established Trust Antecedent (TA) framework which derives ability, benevolence and integrity as the three key factors of a trustee that leads to trust conferred on him or her [10]. This framework, shown in Figure 1, essentially says that a trustee is given trust if s/he is perceived to have skills and competence to deliver desired outcome (ability), to want to do good with the trustor (benevolence), and to adhere to a set of good moral principles (integrity). Moreover, the willingness of a trustor to trust others, known as trust propensity is another factor of trustor that determines how easy a trustor trusts someone. Hence, we have a total of three main trustee factors and one main trustor factor that facilitate trust between a trustor and a trustee. Once a trust is formed with a trustee, the trustor is more willing to take more risk. The outcome of risk taking will serve as feedback to modify the perception about trustee’s ability, benevolence and integrity. TA framework has been widely validated on users in both the organization and e-commerce settings [6], [2].

Although the TA framework has been widely adopted by researchers in management science, it has not been investigated for developing quantitative trust models for online communities. In quantitative trust models, we aim to compute numerical weights for trusts between users indicating the extent to which trusts are built among them. This is essential as quantitative trust models can be more readily integrated with applications, e.g. search and recommendation.

B. Research Objectives

In this research, we focus on studying quantitative trust models for online rating systems based on the TA framework. This requires the qualitative factors in the framework to be mapped into some measurable feature values that can be used to build quantitative trust models. Our purpose is to use these trust models to infer or predict trusts among users using rating data and the very sparse trust data. Each trust model assigns for each given user pair a trust score in the range of [0,1] with 0 representing complete no-trust and 1 representing complete trust. Once trust scores are assigned, we can rank the trust relationships of all user pairs by trust score and evaluate the prediction accuracy of the different proposed trust models.

Two main research contributions of this paper are summarized as follows:

This work is partially supported by Singapore’s National Research Foundation’s research grant, NRF2008IDM-IDM004-036.
The ability, benevolence, integrity and trust propensity factors of trust antecedent framework are carefully analyzed before we propose a range of different quantitative trust models that are based on measurable features derived from these factors. To the best of our knowledge, this is the first attempt developing quantitative trust models from a qualitative one.

Our proposed quantitative trust models are evaluated using a large Epinions dataset that provides the WOT ground truth data. We show that our proposed trust models outperform MoleTrust which is based on trust propagation [8] and some of them are close to SVM-based trust prediction model despite not using any sophisticated training.

c. Paper Organization

The remainder of the paper is organized as follows. We survey the related work in Section II. The trust ranking problem and the Epinions dataset used in our work are introduced in Section III. We then propose our trust ranking models in Section IV and evaluate them in Section V. We finally conclude the paper in Section VI.

II. RELATED WORK

Independent to the TA framework developed in management science, the computer science research community has focused on three main types of trust models, namely trust evaluation, trust prediction and trust propagation. Trust evaluation refers to developing the trust scoring system of some P2P or Web application so as to derive a global trust score to each node or user in the user community [11], [5].

In trust prediction, classification methods are developed to assign trust class labels and weights to candidate user pairs. Liu et.al developed a taxonomy of user and interaction features to represent a user pair and a SVM-based method to classify candidate user pairs [7]. Matsuo and Yamamoto proposed another SVM-based method to assign trust class labels using features extracted from user profiles, product reviews and trust relations [9]. The above works however developed their feature sets based on data centric grouping instead of trust factors. Hence, one may miss out features that belong to some trust antecedent(s) and subsequently construct less optimal trust models.

Trust propagation represents a body of trust model research that focuses on using trust propagation to infer new trust relationships between users [3], [8], [1]. For example, if user u_i trusts u_j and u_j trusts u_k, one may infer that u_i trusts u_k. As the name suggests, trust models based on trust propagation are very much dependent on trust connectivity among users. They may not work well when such connectivity is sparse.

III. PRELIMINARIES

A. Trust Ranking Problem

Let $U = \{u_1, u_2, \cdots, u_n\}$ represent a set of unique users whose rating information and trust relationships are recorded from time points 1 to Z. At some time point $z \in [1, Z]$, we say that a trustor-trustee pair (or trust pair for simplicity) (u_i, u_j) is formed when user u_i creates a trust relationship to user u_j. It is possible that a trust pair is removed after some time but this is rare and we have decided not to consider trust pair removal in this research.

Let $R = \{r_1, r_2, \cdots, r_m\}$ denote the set of reviews written by users in U. The user who wrote a review r_k is denoted by $w(r_k)$. The rating score that a user u_i gives to review r_k is denoted by s_{ik}. We use R_{ij} to denote the set of reviews written by user u_j and rated by user u_i. U^Z to denote the set of users who rate the review r_k. If user u_j rates a review written by user u_j, (u_i, u_j) is called a review rater-writer pair (or rating pair for simplicity).

We would like to address trust prediction in online rating systems as a trust ranking problem. Given a set of candidate trustor-trustee pairs, a trust ranking method will assign a trust score to each pair. Candidate pairs can then be sorted in descending score values and highly ranked pairs are considered more likely to form trust relationships.

Formally, the trust ranking problem can be defined as follows: Given a set of rater-writer pairs G, the corresponding review rating information $\bigcup_{(u_i, u_j) \in G} \{s_{ik} | r_k \in R_{ij}\} \cup \{s_{jk} | r_k \in R_{ji}\}$ (i.e., ratings between users of rating pairs (u_i, u_j)’s in G) and known trustor-trustee pairs T, find the ranks of (u_i, u_j) pairs using their trust score values t_{ij}’s.

B. Overview of Proposed Solution Framework

Given that the trust antecedent (TA) framework has three factors about a trustee (i.e., ability, benevolence and integrity) and one factor (trust propensity) about a trustor as antecedents of trust, we would like to derive for each of them a set of relevant features. This eventually leads us to a meaningful set of features for representing a candidate trust pair.

The ability, benevolence and integrity factors are perceived knowledge about trustees [10]. In other words, a person A who is perceived to have good ability by person B may be perceived to have poor ability by person C. The same applies to benevolence and integrity. This suggests that ability, benevolence and integrity are specific to the trustor and candidate trustee even though they are properties of the candidate trustee. This observation has major implications to the way we derive features for representing the three factors. We therefore would need the ability, benevolence and integrity features to be derived from interactions the trustor have with the candidate trustee.

Trust propensity, on the other hand, is a factor that is associated with the trustor and it does not depend on
candidate trustee at all. Hence, trust propensity is a global trustor property that can be measured by features derived from all interactions a trustor have with all users. We will elaborate on the features derived from rating interaction data for the four factors in Section IV.

C. Extended Epinions Dataset

An extended Epinions dataset has been obtained from the Trustlet website\(^1\) as the rating and trust data for our experiments. The same dataset has been used in [3], [8]. In Epinions, a (dis)trust relationship is directional from the (dis)trustor to the (dis)trustee. The trust relationships of a user’s WOT are publicly available to all other users while the distrust relationships can only be seen by the user. The dataset contains all product reviews and reviews ratings (review rating data) as well as the Web of trust and distrust relationships (trust/distrust data) obtained on 10 January 2001. These data do not carry any timestamps but are artificially assigned timestamp \(z = 0 \) to distinguish them from other data. The dataset also provides the daily review rating data from 17 January 2001 to 30 May 2002 (i.e., 499 days) and the daily trust/distrust data from 17 January 2001 to 12 August 2003 (938 days). In this paper, rating and trust data from 17 January 2001 to 30 May 2002 are used and are assigned timestamps \(z = 1 \) to 499 respectively. Our experiments exclude trust data from 31 May 2002 to 12 August 2003. The statistics of the dataset used in our experiments is given in Table I.

Table I

<table>
<thead>
<tr>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>U</td>
</tr>
<tr>
<td>(</td>
<td>T_{0}</td>
</tr>
<tr>
<td>(</td>
<td>T_{[1,499]}</td>
</tr>
<tr>
<td>(</td>
<td>R</td>
</tr>
<tr>
<td>(</td>
<td>G_{0}</td>
</tr>
<tr>
<td>(</td>
<td>G_{[1,499]}</td>
</tr>
</tbody>
</table>

\(^1\)http://www.trustlet.org/wiki/Extended_Epinions_dataset

In this section, we will describe eight trust ranking models by combining different trust antecedent factors. Each factor can be quantitatively measured by one or more features derived from the interaction data between users and each model is simply a product of these features.

A. Ability-Only (A) Models

An Ability-Only Model defines trust likelihood score of a candidate trustee perceived by the trustor. In Epinions, \(u_i \) has several ways to perceive the ability of \(u_j \), some more direct and others more subtle. We propose the following two features that may more directly depict the candidate trustee’s (or \(u_j \)’s) ability, and call them the ability features:

- **Average rating \(u_i \) received from \(u_j \) \((\bar{s}_{ij})\):** This refers to the average of all \(u_i \)’s ratings on reviews by \(u_j \). We expect this average rating tells how good \(u_i \) thinks of reviews written by \(u_j \). To keep the average rating within [0,1], we convert the raw rating scores to [0,1] by mapping 1 to 5 stars to 0.2, 0.4, 0.6, 0.8 and 1.0 respectively. Formally, \(\bar{s}_{ij} \) is defined as:

\[
\bar{s}_{ij} = \frac{1}{|R_{ij}|} \sum_{r_k \in R_{ij}} s_{ik}
\]

- **Interaction intensity from \(u_i \) to \(u_j \) \((i_{ij})\):** This refers to the number of reviews of \(u_j \) rated by \(u_i \). This is equivalent to the number of ratings \(u_i \) give to \(u_j \)’s reviews. Unlike average rating \(\bar{s}_{ij} \) which does not consider that most users only rate very few reviews, interaction intensity \(i_{ij} \) counts the number of \(u_j \)’s reviews rated by \(u_i \) as the perceived ability of \(u_j \).

To examine more closely the relationship between the number of ratings and trust relationship, we analyzed the aggregated rating data between trust and non-trust rating pairs. Figure 2 depicts the long-tailed distributions of the rating count for trust and non-trust pairs. Note that the bin sizes are different for different ranges of rating count. Among the rating pairs having small rating count (< 10), non-trust pairs dominate 92.54% of the pairs. However, the proportions of trust pairs and non-trust pairs become more balanced (45.93% and 54.07% respectively) among the set of pairs having rating count \(\geq 10 \). When rating count \(\geq 100 \), it is obvious that trust pairs dominate.

\[
i_{ij} = \mathcal{F}(|R_{ij}|, \alpha, \mu)
\]

\(\mathcal{F}()\) is a transformation function. Given that the number of rated reviews can vary from 1 to a very large number, we derive the normalized version of \(i_{ij} \) by applying a transformation function \(\mathcal{F}() \) as follows:
where
\[g(x, \alpha, \mu) = \frac{1}{1 + e^{-\alpha(x-\mu)}} \] (3)

In Equation 3, the sigmoid function in \(g \) was chosen to keep the returned value in the range of \([0, 1]\) as well as to reduce the effect of the large \(x \). \(\alpha \) \((\in \mathbb{R}^+)\) and \(\mu \) \((\in \mathbb{Z}^+)\) decide the slope and controls the midpoint of the sigmoid curve respectively. More specifically, \(g \) is close to 0 when \(x \) is small, equal to 0.5 if \(x = \mu \) and asymptotically to 1 when \(x \) gets very large. In our experiments, we use \(\alpha = 5 \) so as to assign \(i_{ij} \) of > 0.5 to minority of user pairs with more rating interaction as \(|R_{ij}|\) largely follows a power law distribution. We use \(\alpha = 0.1 \) although several other \(\alpha \) values are found to work quite well too.

Given that we have the above two ability features, we now define three ability-only models as follows:

- **A(AR) Model**: For this model, we only use the average rating from \(u_i \) to \(u_j \) for scoring trust from \(u_i \) to \(u_j \). That is:
 \[l_{ij} = s_{ij} \] (4)

- **A(I) Model**: This model uses the interaction intensity for scoring trust.
 \[l_{ij} = i_{ij} \] (5)

- **A(AR + I) Model**: This model combines the two ability features to score trust from \(u_i \) to \(u_j \).
 \[l_{ij} = \frac{s_{ij}}{i_{ij}} \cdot i_{ij} \] (6)

B. Benevolence-Only (B) Model

Benevolence is often associated with characteristics such as helpfulness, caring, loyalty, receptivity, etc. In the online rating setting, there is no direct feature that can be used for measuring benevolence. We however know that different users have different standards in giving ratings. The *stringent* users give lower ratings while the *lenient* ones give higher ratings. For a given user \(u_i \), such leniency characteristics can be *global* if we consider all ratings \(u_i \) gives, or *local* if only ratings \(u_i \) gives to the reviews of another user \(u_j \) are considered. In the following, we derive a local version of leniency \(l_{ij} \).

Local leniency from user \(u_i \) to \(u_j \) (\(l_{ij} \)). We propose to measure the local leniency \(l_{ij} \) by the relative difference between the \(u_i \) ratings on the reviews written by \(u_j \) and the actual quality of these reviews. Let \(R_{ij} \) denote the set of reviews written by \(u_j \) and rated by \(u_i \), and \(q_k \in [0, 1] \) represents the quality of a review \(r_k \) in \(R_{ij} \). We then define \(l_{ij} \) as:

\[l_{ij} = \text{Avg}_{r_k \in R_{ij}} \left(\frac{s_{ik} - q_k}{s_{ik}} \right) \] (7)

Equation 7 produces a leniency value in \((−∞, +∞)\). The zero, positive and negative leniency values indicate a user is neutral, lenient and stringent respectively. The equation also requires the *quality* of each review \(r_k \) to be known. One can take the average of \(s_{ik} \)’s (i.e., all ratings on \(r_k \)) as \(q_k \) but this approach does not consider that \(s_{ik} \)’s are also affected by user leniency \(l_{ij}' \)s. One should adjust \(s_{ik} \) score lower if \(u_j \) is lenient and higher if \(u_j \) is stringent. Furthermore, a review \(r_k \) with too few ratings are not likely to have good \(q_k \). In the following, we therefore define \(q_k \) as an average of \(s_{ik} \)’s adjusted by user leniency multiplied by *popularity score* (denoted by \(o_k \)) of review \(r_k \) as follows.

\[q_k = o_k \cdot \text{Avg}_{u_i \in U_k^R} \left(s_{ik} \cdot (1 - \beta \cdot l_i w(r_k)) \right) \] (8)

where

\[o_k = g(\|U_k^R\|, \alpha', \mu') \] (9)

\(\beta \) is a value in \([0, 1]\) to control the maximum amount of score adjustment on \(s_{ik} \). Intuitive, \(\beta \) should not be near 1. In our experiments, we set \(\beta \) to 0.5. Other \(\beta \) values (<0.8) have been experimented and they gave almost the same results. Similar to normalization of \(l_{ij} \) in Equation 2, \(o_k \) is normalized using the \(g \) function with \(\alpha' \) and \(\mu' \) parameters. In our experiments, we set \(\alpha' \) and \(\mu' \) to be 0.1 and 5 respectively for reasons similar to those of Equation 2.

Equation 9 can be easily computed. Leniency and quality values in Equations 7 and 8 can be solved by iterative computation which first assigns \(l_{ij} \) to be 0 in computing \(q_k \)’s. This is followed by computing a new set of \(l_{ij} \) values which are in turn used in computing a new set of \(q_k \)’s. This process repeats until some convergence is reached.

We now define the **benevolence feature** \(b_{ji} \) from candidate trustee \(u_j \) to trustor \(u_i \) as benevolence-only model as a mapping of \(l_{ji} \) to the range of \([0,1]\):

\[b_{ji} = \frac{l_{ji} - \text{Min} u_j^l u_i^j l_{ji}' \text{\prime}}{\text{Max} u_j^l u_i^j l_{ji}' \text{\prime} - \text{Min} u_j^l u_i^j l_{ji}' \text{\prime}} \] (10)

We then define our **Benevolence-Only (B) Model** as:

\[l_{ij} = b_{ji} \] (11)

C. Integrity-Only (I) Model

Integrity is related to a person’s commitment to his or her promises to others. Similar to benevolence, there is no direct feature from online rating data that measures a candidate trustee’s integrity perceived by a trustor. Instead of leaving out this factor completely, we have introduced a feature to measure the global trustworthiness of the candidate trustee \(u_j \) by number of other users who trust him/her. Hence, the **integrity feature** of \(u_j \) is the mapping of trustworthiness to the range of \([0,1]\):

\[x_j = g(\|U_j^T\|, \alpha'', \mu'') \] (12)

Again, the parameters \(\alpha'' \) and \(\mu'' \) are set to 0.1 and 5 respectively following the same arguments for Equations 2 and 9.
The **Integrity-Only** (D) Model is then defined by:

\[t_{ij} = x_j \]

(13)

Since this model depends on \(x_j \) only, it is not able to distinguish different trustors for the same candidate trustee.

D. Ability, Benevolence and Integrity (ABI) Model

We can combine the different ability, benevolence and integrity features together to arrive at different trust models. In this paper, we will focus on the \(A(\mathcal{AR} + \mathcal{I}^2)BI \) Model that involves all the three key trust factors. As will be shown in Section V, \(A(\mathcal{AR} + \mathcal{I}^2)BI \) model outperforms both \(A(\mathcal{AR}) \) and \(A(\mathcal{I}^2) \) models. The \(\mathcal{AR} + \mathcal{I}^2 \) features are therefore used in the **Ability, Benevolence and Integrity (ABI) Model**.

\[t_{ij} = i_{ij} \cdot b_{ij} \cdot x_j \]

(14)

E. ABI with Trust Propensity (ABIT) Model

We introduce the following two **trust propensity features**, the first based on global leniency a trustor \(u_i \) shows to his or her trustees and the second based on the number of trustees \(u_i \) has:

- **Global Leniency of** \(u_i \) (\(p_i \)):
 \[p_i = \text{Avg}_j \frac{l_{ij} - \text{Min} u'_i u'_j l_{ij'}}{\text{Max} u'_i u'_j l_{ij'} - \text{Min} u'_i u'_j l_{ij'}} \]
 (15)

- **Normalized Trust Outdegree of** \(u_i \):
 \[y_i = \text{Min}((U^T_i \cdot \alpha^p, \mu^p)) \]
 (16)

Given a trustor \(u_i \), we use \(U^T_i \) to denote the set of users that \(u_i \) trusts. The parameters \(\alpha^p \) and \(\mu^p \) are set to 0.1 and 0.5 respectively following the same arguments for Equations 3, 9 and 12.

Two **ABI** with Trust Propensity (ABIT) Models are then defined by:

- **ABIT(L) Model**:
 \[t_{ij} = i_{ij} \cdot b_{ij} \cdot x_j \cdot p_i \]
 (17)

- **ABIT(T) Model**:
 \[t_{ij} = i_{ij} \cdot b_{ij} \cdot x_j \cdot y_i \]
 (18)

V. EXPERIMENTS AND RESULTS

Experiment design. We first conduct experiments to evaluate the performance of the eight proposed trust models \((A(\mathcal{AR}), A(\mathcal{I}^2), A(\mathcal{AR} + \mathcal{I}^2), B, T, ABI, ABIT(L), \text{and ABIT(T) Models}) \) on the whole dataset (data with \(z = 0 \) and 1 to 499). We also compare our models with MoleTrust with and without propagation path length constraint[8] (see Section II). The first MoleTrust model, denoted by **MoleTrust0**, does not impose any path length constraint for trust propagation. The second MoleTrust model, denoted by **MoleTrust2**, imposes a path length constraint of 2.

Both **MoleTrust0** and **MoleTrust2** use the same trust score threshold of 0.6 which was also used in the earlier work [8]. Both MoleTrust models use trust and distrust edges assigned with weights of 1 and 0 respectively.

To evaluate the different models, we randomly chose 1000 trust pairs and the other 1000 non-trust pairs and performed trust ranking on them using all the models. All the candidate pairs have to satisfy the following conditions:

- There exists some review write-rate interaction(s) between the trustor and trustee candidates in the dataset (i.e., from time point 0 to \(Z \)). This is to allow the models to score the candidate pairs from rating data.
- There exists some directed path in the graph of trust and distrust relationships from the trustor to trustee for each trust pair to be scored. This is to give MoleTrust some path for trust propagation for scoring the trust pair.

We carried out experiments on 5 different samples of trust and non-trust pairs and all the experimental results shown below are averaged over the 5 runs. In this experiment, we also applied SVM [4] with linear kernel using the 8 trust features shown in Table II. To compare with the results of earlier work, we show the results of SVM using 13 most important features identified by [7] and the results using these 13 features and our 8 features. We denote the two results by SVM13 and SVM21 respectively.

Performance metrics. We measured the ranking accuracy by \(F_1 \). We ranked the candidate pairs using each trust model and predicted the top scored 1000 pairs as trust pairs. The precision, recall and \(F_1 \) measured from these predicted results are identical and is defined as

\[F_1 = \frac{\text{Num. of correctly predicted trust pairs}}{\text{Num. of random pairs}} \]

Since there are equal numbers of trust and non-trust pairs, the \(F_1 \) of random selection of 1000 trust pairs is 0.5. We therefore expect the \(F_1 \) of a good model to be > 0.5. For MoleTrust0 and MoleTrust2, we observed for each run that only a subset of 2000 candidate pairs that assign trust scores. Let \(M \) be the number of trust pairs with some trust scores produced by a MoleTrust model. \(F_1 \) is thus defined as

\[F_1 = \frac{\text{Num. of correctly predicted trust pairs at top } M}{\text{Num. of random pairs}} \]

giving some advantage to MoleTrust0 and MoleTrust2 over the other models. In the case of SVM, we used 5-fold cross validation on each run of data with stratified numbers of trust and non-trust pairs. For each of the 5 rounds of evaluation, four subsets were used as training data and the remaining one subset was used as test data. The mean \(F_1 \) is then obtained from the \(F_1 \)’s obtained for 5 rounds of test data. We then averaged the mean \(F_1 \) values over the 5 runs.

Results. The second column of Table III shows the \(F_1 \) results of the eight proposed trust models and two MoleTrust

2Some important features were excluded due to their non-existence in our Epinions dataset.

3The best \(F_1 \) value in each group is boldfaced.
models. MoleTrust0 and MoleTrust2 outperformed random selection only by a small margin but both of them were outperformed by our proposed models. $A(AR + I^2)$ model outperformed both MoleTrust models (despite the latter having some advantage in $F1$) as well as $A(AR)$ and $A(I^2)$. This suggests that average rating and interaction intensity together characterize the ability of trustees reasonably well. $\text{ABIT}(\mathcal{L})$ using trust propensity based on global leniency gave the best overall prediction accuracy among all models. SVM using our 8 features yielded the best performance and was better than $\text{ABIT}(\mathcal{L})$ by merely 0.026. Among the SVM methods, SVM using 8 features did better than SVM13 which uses 13 features not following the Trust Antecedent framework. SVM using all 13 and 8 features did only slightly better than SVM using our 8 features. These results suggest that the Trust Antecedent framework has worked quite well in determining the right trust features for trust ranking. It also demonstrates that the applicability of framework in the online setting.

The second column of Table II shows the weights SVM classifier assigned to our features. Benevolence b_{ji}, surprisingly, was assigned the highest weight. It shows that benevolence a trustee shows to his/her trustors helps to establish trusts among them. On the other hand, trust propensity feature y_i is given a negative weight suggesting that it is not relevant to trust ranking. We suspect that y_i does not capture trust propensity well enough and will investigate this further in our future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we apply the trust antecedent framework from management science to develop features under the major factors in trust formation. We propose several trust ranking models using these features. Our experiments show that features derived for all trust factors lead us to new proposed models that perform better than MoleTrust. These features can also be used by SVM to achieve good trust prediction accuracy. Our research shows that trust antecedent framework, despite being qualitative, is useful for trust prediction. Given that trust relationships are important knowledge for the next generation applications, we expect the trust antecedent model to be more commonly adopted for predicting trust in online communities.

REFERENCES

